申雁冰,博士,天津科技大学生物工程学院教授,博士生导师。天津市“131”人才计划第二层次人选, 天津市“131”创新型人才团队和天津市创新人才推进计划重点领域创新团队成员,中国微生物学会工业微生物学专业委员会委员。入选首届天津市高校“优秀青年教师资助计划”和天津市高校中青年骨干创新人才培养计划。
主讲课程:
本科生:《生物药物合成原理》,《生物制药工艺学》,《制药工艺学与实验》
研究生:《生物制药技术》
主要教学研究及成果情况:
参与教改项目2项,参编专著1部。指导本科生获得校级优秀本科毕业论文4项。
[1] 天津市高等学校本科教学质量与教学改革研究计划项目:制药工程专业特色建设的综合改革与实践,2014-2016;
[2] 指导本科生获全国大学生生命科学创新创业大赛一等奖2项,二等奖2项;
[3] 指导本科生国家级和天津市大学生创新创业训练计划项目各2项;
[4] 指导本科生获中国国际“互联网+”竞赛天津市银奖2项;
[5] 指导本科生获“挑战杯”天津市大学生课外学术科技作品竞赛二等奖3项;
[6] 指导本科生获得第五届药学专业大学生自主创新学术论坛二等奖1项。
科研领域及方向:
[1] 甾体、酰胺等医药中间体生物催化与合成;
[2] 微生物细胞催化反应与过程调控;
[3] 新型抗菌肽资源挖掘与应用。
承担的主要项目:
[1] 国家重点研发计划子课题:甾体激素从头生物合成的人工细胞创建及应用”,2020-2024
[2] 国家自然科学基金项目:分枝杆菌合成雄烯二酮过程中辅因子的作用机制及调控,2020-2023
[3] 国家自然科学基金项目:环糊精介质中甾体结构与微生物催化活性的关系和基于活化效应的作用机制研究,2015-2017
[4] 天津市合成生物技术创新能力提升行动项目:新型C19甾体药物合成关键基因元件挖掘与进化改造,2019-2022
[5] 天津市自然科学基金项目:简单节杆菌 C1,2 位脱氢酶底物催化特异性机制研究及理性改造,2018-2021
[6] 天津市科技特派员项目:基于环糊精和细胞共循环的甾体绿色生物转化工艺研究,2018-2019
[7] 天津市应用基础与前沿技术研究计划项目:环糊精介质中甾体结构与C1,2脱氢反应的变化规律及机制,2013-2016
[8] 天津市高等学校科技发展基金计划项目:超分子介质生物催化中主体化合物的选择策略研究,2012-2015
[9] 企业技术开发项目:固态发酵后生元技术开发 ,2023-2025
主要学术成果:
先后发表各类科研论文60余篇,参编专著1部,授权或申请发明专利50余项。发表的主要学术论文有:
[1] Zhao YQ, Shen YB*, Ma S, Luo JM, Ouyang W, Zhou HJ, Tang R, Wang M*. Poduction of 5a-androstene-3, 17-dione from phytosterols by co-expression of 5a-reductase and glucose-6-phosphate dehydrogenase in engineered Mycobacterium neoaurum, Green Chemistry, 2019, 21, 1809-1815
[2] Zhou XL, Zhang Y, Shen YB*, Zhang X, Xu SP, Shang ZH, Xia ML, Wang M*, Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD+/NADH ratio and strengthening cell vitality of Mycobacterium neoaurum,Bioresource Technology, 2019, 279: 209-217.
[3] Tang R, Shen YB, Xia ML, Tu LN, Luo JM, Geng YH, Gao T, Zhou HJ, Zhao YQ, Wang M*. A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone. Bioresource Technology, 2019, 283:242–250
[4] Zhou XL,Zhang Y*,Shen YB,Zhang X,Zan ZH,Luo JM,Xia ML,Wang Min*.Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle, Bioresource Technology. 2020, 309:123307
[5] Ma QY, Gao XZ, Bi XY, Han Q, Tu LN, Yang YP, Shen YB*, Wang M*. Dissolution and deacetylation of chitin in ionic liquid tetrabutylammonium hydroxide and its cascade reaction in enzyme treatment for chitin recycling. Carbohydrate Polymers: 2020, 230: 115605
[6] Su LQ, Shen YB*, Liu ZY, Sheng XN, Zhu YN, Wang JX, Liu JJ, Wang M*. Effects of palygorskite on steroid-transformation in Mycobacterium neoaurum,Applied Clay Science, 2023, 233:106839.
[7] Zhang CW, Shen YB*, Gao YY, Zan ZH, Wang M*. Efficient production of 14α-OH-AD by engineered Mycolicibacterium neoaurum via coupled cofactor and reconstructed electron transport system, Systems Microbiology and Biomanufacturing. 2023, 2: 358-369
[8] Su ZH, Zhang ZJ, Yu J, Yuan CC, Shen YB*, Wang JX, Su LQ, Wang M*. Combined enhancement of the propionyl‑CoA metabolic pathway for efficient androstenedione production in Mycolicibacterium neoaurum, Microbial Cell Factories. 2022, 21:218
[9] Xia ML, Yan XY, ZanZH, Yang F, Liu MJ, Xue DN, Shen YB*, Wang M*. Construction of automated high-throughput screening method for finding efficient 3-ketosteroid 1,2-dehydrogenating strains,Applied Microbiology and Biotechnology, 2022,106(21): 7301-7314
[10] Tang R, Ren XX, Xia ML, Shen YB*, Tu LN, Luo JM, ZhangQ, Wang YY, Ji PL, Wang M*. Efficient one-step biocatalytic multienzyme cascade strategy for direct conversion of phytosterol to C-17-hydroxylated steroids. Applied and Environmental Microbiology. 2021, 87(24): e0032121.
[11] Ma QY, Gao XZ, Tu LN, Han Q, Zhang X, Guo YB, Yan WQ, Shen YB*, Wang M*. Enhanced chitin deacetylase production ability of Rhodococcus equi CGMCC14861 by co-culture fermentation with Staphylococcus sp. MC7. Frontiers in Microbiology, 2020,11,592477
[12] Zhang Y,Zhou XL,Wang XM,Wang L,Xia ML,Luo JM,Shen YB*,Wang M*.Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum[J]. Microbial Cell Factories,2020,19:13.
[13] Ma, QY, Gao, XZ, Bi, XY, Tu LN, Xia ML, Shen YB*, Wang M*. Isolation, characterisation, and genome sequencing of Rhodococcus equi: a novel strain producing chitin deacetylase [J]. Scientific reports, 2020, 10(1), 4229.
[14] Su LQ, Xu SP, Shen YB*, Xia ML, Ren XX, Wang LF, Shang ZH, Wang M*. 2020. The sterol carrier hydroxypropyl-β-cyclodextrin enhances the metabolism of phytosterols by Mycobacterium neoaurum. Applied and Environmental Microbiology. 2020,86(15): e00441-20
[15] Tang R, Shen YB*, Wang M*, Zhou HJ, Zhao YQ. Highly efficient synthesis of boldenone from androst-4-ene-3,17-dione by Arthrobacter simplex and Pichia pastoris ordered biotransformation[J]. Bioprocess and Biosystems Engineering. 2019, 42(6), 933-940
[16] Shen YB, Niu LL, Yu ZQ, Wang M*, Shang ZH, Yang Y. Sodium alginate-grafted β-cyclodextrins as a matrix for immobilized Arthrobacter simplex for cortisone acetate biotransformation, Applied Surface Science, 2018,444:42-47.
[17] Liu JJ, Wang LF, Shen YB*, Su LQ, Wang M*. Effect of β-cyclodextrins Derivatives on Steroids Biotransformation by Arthrobacter simplex, Applied Biochemistry and Biotechnology, 2018, 185(4), 1004-1013.
[18] Su LQ, Shen YB*, Xia ML, Shang ZH, Xu SP, An XJ, Wang M*. Overexpression of cytochrome p450 125 in Mycobacterium: a rational strategy in the promotion of phytosterols biotransformation, Journal of Industrial Microbiology and Biotechnology, 2018, 45(10): 857-86.
[19] Wang LF, Shen YB, Liu MJ, Tang R, Wang M*. Influence of imidazolium-based ionic liquids on the steroid biotransformation by Arthrobacter simplex[J]. Journal of Chemical Technology & Biotechnology, 2018,93(2):426-431.
[20] Su LQ, Shen YB*, Zhang WK, Gao T, Shang ZH, Wang M*. Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation[J]. Microbial Cell Factories, 2017, 16(1):182.
[21] Shen YB, Yu ZQ, Yang X, Wang F, Wang M*. A new technique for promoting cyclic utilization of cyclodextrins in biotransformation, Journal of Industrial Microbiology and Biotechnology, 2017,44(1):1-7.
[22] Qin N, Shen YB*, Yang X, Su LQ, Tang R, Li W, Wang M*. Site-directed mutagenesis under the direction of in-silico protein docking modeling reveals the active site residues of 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum, World Journal of Microbiology and Biotechnology, 2017,33:146.
[23] Su LQ , Shen YB*, Gao T, Luo JM, Wang M*. Improvement of AD biosynthesis and cofactors analysis response to enhanced oxygen transfer by oxygen vectors in Mycobacterium neoaurum TCCC11979, Applied Biochemistry and Biotechnology, 2017,182:1564-1574.
[24] Qiao YQ, Shen YB*, Huang W, Wang YP, Ren JJ, Xia T, Wang M. Biocatalyst-mediated production of 11α, 15α-dihydroxy derivatives of androst-1, 4-dien-3, 17-dione, Journal of Bioscience and Bioengineering, 2017,123(6):692-697.
[25] Tang R, Shen YB, Wang M*, Zhai Y, Gao Q. Highly chemoselective and efficient production of 2,6-difluorobenzamide using Rhodococcus ruber CGMCC3090 resting cells.[J]. Journal of Bioscience & Bioengineering, 2017,124 (6): 641-646.
[26] Shen YB, Wang LF, Liang JT, Tang R, Wang M*. Effects of two kinds of imidazolium-based ionic liquids on the characteristics of steroid-transformation Arthrobacter simplex[J]. Microbial Cell Factories, 2016, 15:118.
[27] Liu Y, Shen YB*, Qiao YQ, Su LQ, Li C, Wang M*. The effect of 3-ketosteroid-Δ1-dehydrogenase isoenzymes on the transformation of AD to 9α-OH-AD by Rhodococcus rhodochrous DSM43269[J]. Journal of Industrial Microbiology and Biotechnology, 2016, 43: 1303-1311.
[28] Shen YB, Liang JT, Li HN, Wang M*. Hydroxypropyl-β-cyclodextrin-mediated alterations in cell permeability, lipid and protein profiles of steroid-transforming Arthrobacter simplex[J]. Applied Microbiology and Biotechnology, 2015, 99(1): 387-397.
[29] Xie RL, Shen YB, Qin N, Wang YB, Su LQ, Wang M*. Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium neoaurum[J]. Journal of Industrial Microbiology and Biotechnology, 2015, 42: 507-513.
授权专利:
[1] 王敏,申雁冰,骆健美,牛璐璐,于子棋,郑宇,夏梦雷,宋佳. Method for catalyzing steroid biotransformation..国际专利号:IND403266
[2] 申雁冰,王敏,张晨薇,骆健美,高园园,杨佳浩.一种合成14α-羟基-雄烷二酮的基因工程菌及其应用.专利号:ZL 202210083445.5
[3] 申雁冰,王敏,张振建,周秀玲,张扬,骆健美,夏梦雷.一种降低氮源用量的甾体药物前体生产方法.专利号:ZL2020100569747.
[4] 申雁冰,王敏,周秀玲,张扬,张晓,夏梦雷,骆健美.一种加强胞内丙酰辅酶A代谢提高甾药前体生产的方法.专利号:ZL 2020106308524
[5] 申雁冰, 王敏, 周秀玲, 张扬, 夏梦雷, 骆健美, 张晓.一种通过强化NADH脱氢增强甾药前体生产的方法.专利号:ZL2019100843679
[6] 申雁冰, 王敏, 赵云秋, 骆健美, 夏梦雷,马赛, 屠琳娜. 一种高效产5α-雄烷二酮的基因工程菌及其应用.专利号:ZL2019100877177
[7] 申雁冰,王敏,郭俊超,谢培培,杜俊,夏梦磊,骆健美.环糊精接枝物多孔胶珠及其在甾体转化中的应用.专利号:ZL 202011064702.8
[8] 申雁冰,王敏,刘晶晶,汤睿,骆健美,郑宇.一种用于植物甾醇侧链降解反应的底物处理方法.专利号:ZL 201610270775.X
[9] 申雁冰,王敏,郭俊超,谢培培,张鹏,夏梦磊.一种模拟发酵罐生物反应装置.ZL 202022441824.6.
[10] 申雁冰,王敏,于子棋,商志华,夏梦雷. 海藻酸钠接枝衍生环糊精固定化细胞及其应用.专利号:ZL 2017104526560
[11] 申雁冰;王敏;王芳;梁静婷;骆健美;郑宇. 醋酸可的松转化中固定化细胞和环糊精循环利用的方法.专利号: ZL201310665015.5
[12] 王敏,申雁冰,昝泽慧,盛雪凝,杜俊,苏振华,骆健美.一种通过加强胞内辅因子代谢和糖代谢提高甾醇转化的方法.专利号:ZL 202210421339.3.
[13] 王敏, 张扬, 申雁冰, 周秀玲, 骆健美, 夏梦雷, 张振建.一种高效发酵生产甾药前体的方法.专利号:ZL 2019100843486
[14] 王敏,申雁冰,周海杰,龙科艺,骆健美,夏梦雷,屠琳娜,马赛. 高产9α-OH-AD的偶发分枝杆菌及其应用.专利号:ZL201910066720.0
[15] 王敏,申雁冰,杨妍,骆健美,夏梦雷,王喜波. 一种混菌发酵转化植物甾醇制备甾体药物中间体的方法.专利号:ZL2018113309420
[16] 王敏,申雁冰,于子棋,谢晓林,骆健美. 海藻酸钠接枝天然环糊精固定化细胞及其应用.专利号:ZL2017104526503
[17] 王敏,申雁冰,薛玮莹,黄炜,邓铭倩,王喜波,骆健美. 一株蓝色犁头霉及其应用[P]. 专利号:ZL201710851243.X
[18] 王敏,申雁冰,牛璐璐,杨妍,骆健美. 一种真菌催化甾体生物转化的方法.专利号:ZL2017104526448
[19] 王敏,申雁冰,刘晶晶,苏立秋,郑宇,骆健美. 一种雄烯二酮的制备方法.专利号:ZL201610278447.4
[20] 王敏,申雁冰,翟莹,郑宇.一种利用赤红球菌制备2,6-二氟苯甲酰胺的方法.专利号:ZL201310309256.6
获奖情况:
获天津市科学技术进步奖一等奖1项、中国专利优秀奖2项、中国创新挑战赛二等奖1项,指导和协助指导研究生获天津市优秀博士论文1项、天津市优秀硕士论文2项,获校第五届“良师益友—我心目中的最好导师”等。
联系方式:
办公地点:天津经济技术开发区第十三大街29号天津科技大学生物工程学院
邮政编码:300457
办公电话:022-60601256
Email: shenyb@tust.edu.cn